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Figure 2: Exhaustive search finds the optimal 
variable subset. Sequential Backward Selection 
(SBS) and Sequential Forward Selection (SFS), 

which were implemented in Spark, achieve 
lower and more consistent prediction accuracy 

than existing scikit-learn methods. 

Figure 6: Correlation grouping with correlation 
threshold 0.8 finds results similar to SBS. 
Larger, expensive models are eliminated 

quickly. The improvement is dependent on 
variable correlations in the data and how the 

variables are grouped.  

Figure 3: SBS identifies the optimal subset size 
as well as noisy and redundant variables. 

Noisy variables negatively impact prediction 
while redundant variables do not contribute 

new information. Due to exponential runtime, 
exhaustive search could not be completed on 

the larger variable set. 

Figure 5: Training time of Gradient Boosting 
models improves significantly at little cost to 

the model prediction accuracy until the 
variable subset becomes too small to make a 

good prediction. 

Figure 7: Similar improvement trends show 
that selected variables are not overfit to data. 
Variables are selected based on importance to 

the data rather than model variance. 
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Figure 4: Testing SBS and exhaustive search 
on a smaller subset of variables shows that 

SBS is able to achieve similar prediction 
accuracy to the optimal subset. 
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APPLICATION 

VARIABLE SELECTION 

•  Palomar Transient Factory (PTF) observes the 
sky to identify astronomical transients, such as 
supernovae 

•  PTF workflow processes image data to 
identify potential transient objects 

•  Ongoing effort to understand the resource 
requirement for the PTF workflows 

•  Challenge: build a performance model that 
accurately predicts the total execution time 
after the first few steps of the workflow 

To improve the accuracy and 
training time of performance 

models using parallelized variable 
selection methods 

•  Variable selection identifies optimal subset for 
Gradient Boosting prediction model 

•  Shorter training time 
•  Improved prediction accuracy 

•  SBS approximates exhaustive selection 
•  Parallelization improves runtime from 18 

hours (65020 sec) to 45 min (2727 sec) 
•  Correlation grouping identifies same variables 

•  Reduces runtime of SBS from 2727 sec to 
888 sec on PTF dataset 

•  Correlation threshold determined by 
balancing runtime improvement and 
selection accuracy 

•  Maximum improvement with many 
medium sized correlation groups 
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•  Parallelization 
•  Select variables from correlation groups 

in parallel 
•  Test reduced variable subsets in parallel 
•  Use 3 nodes with 24 cores each 
•  Split into 50 parallel computations (equal 

to number of variables) 

Figure 1: Workflow of 2-phase variable 
selection process. Stacked sections are 

parallelized using Apache Spark 
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•  Gradient boosting selected as machine 
learning model 

•  Non-linear prediction 
•  Consistent prediction results 

•  Variable selection mechanism contains 
prediction model for training 

•  Use resulting variable subset to build actual 
performance model 

•  RMSE in Figures 2-6 refers to prediction error 
of training model 

•  Figure 7 compares error between training 
model and performance model 

•  Optimizing variables for training model 
optimizes variable subset for performance 
model 


